Next generation sequencing in a large cohort of patients presenting with neuromuscular disease before or at birth.
نویسندگان
چکیده
BACKGROUND Fetal akinesia/hypokinesia, arthrogryposis and severe congenital myopathies are heterogeneous conditions usually presenting before or at birth. Although numerous causative genes have been identified for each of these disease groups, in many cases a specific genetic diagnosis remains elusive. Due to the emergence of next generation sequencing, virtually the entire coding region of an individual's DNA can now be analysed through "whole" exome sequencing, enabling almost all known and novel disease genes to be investigated for disorders such as these. METHODS Genomic DNA samples from 45 patients with fetal akinesia/hypokinesia, arthrogryposis or severe congenital myopathies from 38 unrelated families were subjected to next generation sequencing. Clinical features and diagnoses for each patient were supplied by referring clinicians. Genomic DNA was used for either whole exome sequencing or a custom-designed neuromuscular sub-exomic supercapture array containing 277 genes responsible for various neuromuscular diseases. Candidate disease-causing variants were investigated and confirmed using Sanger sequencing. Some of the cases within this cohort study have been published previously as separate studies. RESULTS A conclusive genetic diagnosis was achieved for 18 of the 38 families. Within this cohort, mutations were found in eight previously known neuromuscular disease genes (CHRND, CHNRG, ECEL1, GBE1, MTM1, MYH3, NEB and RYR1) and four novel neuromuscular disease genes were identified and have been published as separate reports (GPR126, KLHL40, KLHL41 and SPEG). In addition, novel mutations were identified in CHRND, KLHL40, NEB and RYR1. Autosomal dominant, autosomal recessive, X-linked, and de novo modes of inheritance were observed. CONCLUSIONS By using next generation sequencing on a cohort of 38 unrelated families with fetal akinesia/hypokinesia, arthrogryposis, or severe congenital myopathy we therefore obtained a genetic diagnosis for 47% of families. This study highlights the power and capacity of next generation sequencing (i) to determine the aetiology of genetically heterogeneous neuromuscular diseases, (ii) to identify novel disease genes in small pedigrees or isolated cases and (iii) to refine the interplay between genetic diagnosis and clinical evaluation and management.
منابع مشابه
Diagnostic NGS for Severe Neuromuscular Disorders.
Investigators from the University of Western Australia report the diagnostic yield of performing next generation sequencing (NGS; whole exome and targeted capture of 277 neuromuscular genes) in a heterogenous cohort of patients with neuromuscular disorders (NMD) presenting at or before birth.
متن کاملUtility of next generation sequencing in genetic diagnosis of early onset neuromuscular disorders.
BACKGROUND Neuromuscular disorders are a clinically, pathologically, and genetically heterogeneous group. Even for the experienced clinician, an accurate diagnosis is often challenging due to the complexity of these disorders. Here, we investigated the utility of next generation sequencing (NGS) in early diagnostic algorithms to improve the diagnosis for patients currently lacking precise molec...
متن کاملUnusual multisystemic involvement and a novel BAG3 mutation revealed by NGS screening in a large cohort of myofibrillar myopathies.
BACKGROUND Myofibrillar myopathies (MFM) are a group of phenotypically and genetically heterogeneous neuromuscular disorders, which are characterized by protein aggregations in muscle fibres and can be associated with multisystemic involvement. METHODS We screened a large cohort of 38 index patients with MFM for mutations in the nine thus far known causative genes using Sanger and next genera...
متن کاملGenetic Characterization of a French Cohort of GNE-mutation negative inclusion body myopathy patients with exome sequencing.
INTRODUCTION Hereditary inclusion body myopathy (hIBM) refers to a group of clinically and genetically heterogeneous diseases. The overlapping histochemical features of hIBM with other genetic disorders lead to low diagnostic rates with targeted single-gene sequencing. This is true for the most prevalent form of hIBM, GNEpathy. Therefore, we used whole-exome sequencing (WES) to determine whethe...
متن کاملThe Genetics of Non-Syndromic Primary Ovarian Insufficiency: A Systematic Review
Purpose: Several causes for primary ovarian insufficiency have been described, including iatrogenic and environmental factor, viral infections, chronic disease as well as genetic alterations. Given the large number of genes described in the literature so far, the aim of this review was to collect all the genetic mutations associated with non-syndromic primary ovarian insufficiency. Methods: All...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Orphanet journal of rare diseases
دوره 10 شماره
صفحات -
تاریخ انتشار 2015